Urban Heat Island Modeling in Conjunction with Satellite-Derived Surface/Soil Parameters
نویسندگان
چکیده
Although it has been studied for over 160 years, the urban heat island (UHI) effect is still not completely understood, yet it is increasingly important. The main purpose of this work is to improve UHI modeling by using AVHRR (Advanced Very High Resolution Radiometer) satellite data to retrieve the surface parameters (albedo, as well as soil thermal and moisture properties). In this study, a hydrostatic three-dimensional mesoscale model was used to perform the numerical modeling. The Carlson technique was applied to retrieve the thermal inertia and moisture availability using the thermal AVHRR channels 4 and 5. The net urban effect was determined as the difference between urban and nonurban simulations, in which urban parameters were replaced by rural parameters. Two winter days were each used for two numerical simulations: a control and an urban-to-rural replacement run. Moisture availability values on the less windy day showed generally a south to north gradient downwind of the city and urban values less than rural values (the urban dry island day). Moisture availability was higher on the windy day, with uniform values in the rural and urban areas (uniform soil moisture day). The only exceptions were variations in the rural hills north of the city and the low rural values under the polluted urban plume downwind of the city. While thermal inertia values showed no urban–rural differences on the uniform soil moisture day, they exhibited larger values over Atlanta than in surrounding rural area on the (less moist) dry island day. Two puzzling facts exist in the data: 1) lack of a north–south thermal inertia gradient on the dry soil day to correspond to its abovementioned moisture availability gradient and 2) rural thermal inertia values do not change between both days in spite of their large difference in soil moisture. The observed lack of corresponding urban change is expected, as its thermal inertia values depend more on urban building materials than on moisture of soil. In both cases both the 2-m and surface skin UHIs showed positive values at night and negative values (an urban cool island, UCI) during the day. The larger nighttime 2-m UHI was on the dry day (0.88 vs 0.68C), while the larger daytime 2-m UCI was on the moist soil day (20.38 vs 20.58C). Note that the surface differences were almost always greater than the 2-m differences. These day–night differences imply a rural thermal inertia lower than its urban values on both days, which is in conflict with the observations on the wet uniform soil moisture day. On the uniform thermal inertia day (wet day), both the UHI and UCI amplitudes should be less than on the other day, but this is not the case. A possible explanation for both of these conflicts is the improper influence of the urban plume on this day on lowering the thermal inertia and moisture availability values used in the replacement urban simulation.
منابع مشابه
A satellite remote sensing based assessment of urban heat island in Lanzhou city , northwest China
As a promising application, quantitative remote sensing of urban heat island (UHI) could facilitate our understanding of urban/suburban environment and its relationship with urbanization. This paper investigates the urban heat island effect of Lanzhou, China, a densely built up city in a valley, based on Landsat ETM+ image acquired on April 22, 2000, whose spatial resolution is sufficient for m...
متن کاملEffect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کاملEffect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کاملA Survey of Landscape Metrics and Land-use/land-cover Structures on Urban Heat Islands Surface: A Case Study on Urmia City, Iran
Urbanization is developing unprecedentedly on a global scale. One of the chief repercussions of urbanization, caused by man-made alterations in land-use/land-cover (LULC), is the formation of urban heat islands. Albeit, differences among landscape structures and its accompanied effects on the environment are mostly neglected. Accordingly, the main objective of this study is to survey the variou...
متن کاملSatellite-derived land surface parameters for mesoscale modelling of the Mexico City basin
Mesoscale meteorological modelling is an important tool to help understand air pollution and heat island effects in urban areas. Accurate wind simulations are difficult to obtain in areas of weak synoptic forcing. Local factors have a dominant role in the circulation and include land surface parameters and their interaction with the atmosphere. This paper examines an episode during the MCMA-200...
متن کامل